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This paper proposes a neural network architecture for solving systems of non-linear equations.

A back propagation algorithm is applied to solve the problem, using an adaptive learning rate

procedure, based on the minimization of the mean squared error function defined by the sys-

tem, as well as the network activation function, which can be linear or non-linear. The results

obtained are compared with some of the standard global optimization techniques that are

used for solving non-linear equations systems. The method was tested with some well-known

and difficult applications (such as Gauss–Legendre 2-point formula for numerical integration,

chemical equilibrium application, kinematic application, neuropsychology application, com-

bustion application and interval arithmetic benchmark) in order to evaluate the performance

of the new approach. Empirical results reveal that the proposed method is characterized by

fast convergence and is able to deal with high-dimensional equations systems.
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1 Introduction and review of previous papers

Polynomial systems of equations are of major interest and they are heavily used in any

discipline of sciences such as mathematics, physics and engineering. The last decades a

lot of algorithms have been developed for solving such systems (see, for example, [14]

and [15] as well as [24], [35] and [34]). According to [21], the approaches for solving

polynomial systems of equations can be classified in three main categories as follows:

(1) Symbolic methods that stem from algebraic geometry and are able to perform

variable elimination. However, the currently available methods are efficient only for

sets of low-degree systems of polynomials.
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2 K. Goulianas et al.

(2) Numerical methods that are mainly based on iterative procedures. These methods

are suitable for local analysis only and perform well only if the initial guess is good

enough, a condition that generally is rather difficult to satisfy.

(3) Geometric methods such as subdivision-based algorithms for intersection and ray

tracing of curves and surfaces. They are characterized by slow convergence and they

have limited applications.

Since polynomial systems can be considered as generalizations of systems of linear

equations, it is tempting to attempt to solve them, using the well-known iterative pro-

cedures of numerical linear algebra, after their appropriate modification. The methods

described by Ortega and Rheinboldt [30, 31] are examples of such an approach. On the

other hand, the so-called continuation methods [23] begin with a starting system with a

known solution that it is gradually transformed to the non-linear system to be solved.

This is a multistage process, in which, at each stage, the current system is solved by

Newton-type methods to identify a starting point for the next stage system, since, as the

system changes, the solution is moved on a path that joins a solution of the starting

system with the solution of the desired system.

There are two other efficient approaches for solving polynomial systems of equations

as well as non-linear algebraic systems of any type, based on the use of neural networks

and genetic algorithms. Since the proposed method is a neural based one, the neural-

based methods are described in a lot of detail, while the description of the genetic

algorithm approaches is shorter enough. The main motivation for using neural networks

in an attempt to solve non-linear algebraic systems, is that neural networks are universal

approximators in the sense that they have the ability to simulate any function of any type

with a predefined degree of accuracy. Towards this direction, Nguyen [28] proposed a

neural network architecture capable of implementing the well-known Newton–Raphson

algorithm for solving multivariate non-linear systems using the iterative equation xp =

xp−1 + Δxp in the pth step with J (xp−1)Δxp = −f(xp−1) where x is the solution vector of

the appropriate dimensions, and J is the Jacobian matrix. Nguyen defined the quadratic

form

Ep=[J (xp−1)Δxp+f(xp−1)]t[J (xp−1)Δxp+f(x)p−1]

characterized by a zero minimal value (the notation At represents the transpose of the

matrix A) and a gradient in the form

∂Ep

∂Δxp
=2[J (xp−1)]tJ(xp−1)Δxp+2[J (xp−1)t]f(xp−1).

The proposed neural network that deals with this situation uses Δxp as the output vector

and satisfy the equation:

dΔxp

dt
= k

∂Ep

∂Δxp
,

where k is a negative scalar constant. The stability of this system is guaranteed by

the fact that its Hessian matrix is a positive definite matrix. The proposed structure is

a feed-forward two-layered neural network in which the weighting coefficients are the
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Solving polynomial systems 3

elements of the transpose of the Jacobian matrix. The output of this network implements

the vector-matrix product [J (xp−1)]tJ(xp−1)Δxp. Each neuron is associated with a linear

processing function while the total number of processing nodes is equal to the dimension

N of the non-linear system.

On the other hand, Mathia & Saeks [25] solved non-linear equations using recurrent

neural networks (and more specifically linear Hopfield networks) in conjunction with

multilayered perceptrons that are trained first. The multilayered perceptrons they used,

are composed of an input layer of m neurons, a hidden layer of q neurons and an output

layer of n neurons with the matrix W1 to contain the synaptic weights between the input

and the hidden layer and the matrix W2 to contain the synaptic weights between the

hidden and the output layer. The neurons of the hidden layer use the sigmoidal function,

while the neurons of the output layer are linear units. This Multi-Layered Perceptron

(MLP) can be viewed as a parameterized non-linear mapping in the form:

f : Rm → Rn with y = f(x) = W2 · g(W1x + wb) = W2 · g(α),

where α = W1x + wb and

g : Rq → Rq with z = g(α) = [g(α1), g(α2), . . . , g(αq)]
T

is the hidden layer representative function. On the other hand, the linear Hopfield network

has the well-known recurrent structure with a constant input x and state y and in this work

it uses linear activation functions instead of the commonly used non-linear functions (such

as the step of sigmoidal function). Mathia and Saeks used this structure to implement

the Newton method defined above that guarantees a quadratic convergence, given a

sufficiently accurate initial condition x0 and a non-singular Jacobian matrix J for all the

iteration steps. In this approach, the Jacobian of the MLP is obtained via the chain rule:

J =
∂f

∂x
=

∂f

∂z
· ∂z

∂α
· ∂α

∂x
= W2 · [G(α(I − G(α)))]α=α0

· W1.

It is clear that since this method requires the inversion of the Jacobian matrix, this

matrix must be a square matrix and therefore only the case m = n is supported by this

architecture. Another prerequisite for the method to work is that the number of hidden

neurons must be greater than the number of input and output neurons. Based on all these

evidences, Mathia and Saeks defined the recurrent network as

xp+1 = xp − α(W2(Gp(I − Gp))W1)
−1 × (W2g(W1xp + wb) − y),

where Gp = G(αp) is a constant diagonal matrix. The solution of the non-linear equation

can now be estimated via an iterative procedure that terminates when a predefined

tolerance value is reached by the network.

To evaluate the performance of the proposed method for various system dimensions, it

is compared to four well-known methods found in the literature. The first one of them is

the Newton’s method [4] that allows the approximation of the function F (x) by its first

order Taylor expansion in the neighbourhood of a point x = (x1, x2, x3, . . . , xn)
T ∈ Rn.
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4 K. Goulianas et al.

This is an iterative method that uses as input an initial guess

x0 = [x1(0), x2(0), x3(0), . . . , xn(0)]T (1.1)

and generates a vector sequence {x1, x2, . . . , xk, . . . }, with the vector xk associated with the

kth iteration of the algorithm, to be estimated as

xk = xk−1 − J (xk−1)
−1F (xk−1), (1.2)

where J (xk) ∈ Rn×n is the Jacobian matrix of the function F = (f1, f2, . . . , fn)
T estimated

at the vector xk . Note, that even though the method converges fast to the solution provided

that the initial guess (namely the starting point x0) is a good one, it is not considered as

an efficient algorithm, since it requires in each step the evaluation (or approximation) of

n2 partial derivatives and the solution of an n×n linear system. A performance evaluation

of the Newton’s method as well as other similar direct methods, shows that these methods

are impractical for large-scale problems, due to the large computational cost and memory

requirements. In this work, besides the classical Newton’s method, the fixed Newton’s

method was also used. As it is well known, the difference between these variations is the

fact that in the fixed method the matrix of derivatives is not updated during iterations,

and therefore the algorithm uses always the derivative matrix associated with the initial

condition x0.

An improvement to the classical Newton’s method can be found in the work of

Broyden [2] (see also [3] as well as [11] for the description of the secant method, another

well-known method of solution), in which the computation at each step is reduced

significantly, without a major decrease of the convergence speed; however, a good initial

guess is still required. This prerequisite is not necessary in the well-known steepest descent

method, which unfortunately does not give a rapidly convergence sequence of vectors

towards the system solution. The Broyden’s methods used in this work are the following:

• Broyden method 1. This method allows the update of the Jacobian approximation Bi

during the step i in a stable and efficient way and is related to the equation

Bi = Bi−1 +
(Δi − Bi−1δi)δ

T
i

δTi Δi

, (1.3)

where i and i − 1 are the current and the previous steps of iterative algorithm, and

furthermore we define, Δi = f(xi) − f(xi−1) and δi = xi − xi−1.
• Broyden method 2. This method allows the elimination of the requirement of a linear

solver to compute the step direction and is related to the equation

Bi = Bi−1 +
(δi − Bi−1Δi)δ

T
i Bi−1

δTi Bi−1Δ
, (1.4)

with the parameters of this equation to be defined as previously.

The last described neural network approach used for solving non-linear algebraic equa-

tions, is the modified Hopfield network model of Mishra and Kalra [27] that can solve a

non-linear system of equations with n unknowns. This neural network is composed of n
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Solving polynomial systems 5

product units whose outputs are linearly summed via synaptic weights. The state equation

of each one of those neurons is formed by applying the well-known Kirchhoff’s law in

the electric circuit that represents the network and it is proven to have the form

Ci

dϕ−1(xi)

dt
+

ϕ−1(xi)

Ri

=
∑
j

wijfij(x1, x2, x3, . . . , xn) + Ii

(i, j) ∈ [1, 2, . . . , n], where ϕ(x) = 1/(1 − e−x) [1] [5] [8] [9] [16] [17] is the sigmoidal

activation function of the n neurons. The energy function of the modified Hopfield

network is defined as

E =
∑
i

∫ xi

0

ϕ−1(s)

Ri

ds−
∑
i

∑
j

wijfij(x1, x2, x3, . . . , xn)xi −
∑
i

Iixi

and it is a bounded function since it can be proven that it satisfies the inequality E′(t) � 0

where E′(t) is the derivative of the energy function E(t).

In order to use this model for solving non-linear algebraic systems, this energy function

is defined as the sum of the squares of the differences between the left- and the right-hand

side of each equation, while the number n of neurons is equal to the number of the

unknowns of the non-linear algebraic system under consideration. It can be proven that

this system is stable in the Lyapunov sense and it is able to identify the solution vector of

the above system of equations.

On the other hand, in the genetic algorithm approach, a population of candidate

solutions (known as individuals or phenotypes) to an optimization problem is evolved

towards better solutions. Each candidate solution is associated with a set of properties

(known as chromosomes or genotypes) that can be mutated and altered. In applying this

technique, a population of individuals is randomly selected and evolved in time-forming

generations, whereas a fitness value is estimated for each one of them. In the next step, the

fittest individuals are selected via a stochastic process and their genomes are modified to

form a new population that is used in the next generation of the algorithm. The procedure

is terminated when either a maximum number of generations has been produced, or a

satisfactory fitness level has been reached.

The application of genetic algorithm for solving non-linear algebraic systems allows the

simultaneous consideration of multiple solutions due to their population approach [26]

(see also [12] and [18]). Furthermore, since they do not use at all derivative information,

they do not tend to get caught in local minima. However, they do not always converge to

the true minimum, and in fact, their strength is that they rapidly converge to near optimal

solutions. The most commonly used fitness function has the form g = max {abs (fi)}
(i = 1, 2, 3, . . . , n) where max {abs (fi)} is the maximum absolute value of the individual

equations of the system and n is the number of the system equations. The hybrid approach

of Karr et al. [18] attempt to deal with the weakness of the classical Newton–Raphson

method according to which when the initial guess x0 is not close to the root (or, even

worse, it is completely unknown) the method does not behave well. In this case, a genetic

algorithm can be used to locate regions in which roots of the system of equations are

likely to exist. The fitness function is the function g defined above, while, the coding
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6 K. Goulianas et al.

schema for string representation is the well-known concatenated binary linearly mapped

coding scheme.

The last work cited in this paper is the work of Grossan and Abraham [14] (see also [15])

that deal the system of non-linear equations using a modified line search approach and

a multiobjective evolutionary algorithm that transfers the system of equations into an

optimization problem.

Returning to the proposed neural-based non-linear system solver, the main idea is

to construct a neural network-like architecture that can reproduce or implement the

structure of the system of polynomials to be solved by assigning the values of the

polynomial coefficients as well as the components of their solution (x1, x2, x3, . . . , xn) to

fixed and variable synaptic weights in an appropriate way. If this network is trained such

that its output vector is the null vector, then, by construction, the values of the variable

synaptic weights will be the components of one of the system roots. This idea together

with representative examples is explained completely in [22] (see also [13]).

2 Problem formulation

As it is well known from non-linear algebra, the structure of a typical non-linear algebraic

system of n equations with n unknowns has the form:

f1(x1, x2, x3, . . . , xn) = 0,

f2(x1, x2, x3, . . . , xn) = 0,

f3(x1, x2, x3, . . . , xn) = 0, (2.1)

. . . . . . . . . . . . . . . . . . . . . . . .

fn(x1, x2, x3, . . . , xn) = 0,

or, using vector notation, F (x) = 0, where

F = (f1, f2, f3, . . . , fn)
T (2.2)

is a vector of non-linear functions

fi(x) = fi(x1, x2, x3, . . . , xn), (2.3)

each one of them being defined in the vector space

Ω =

n∏
i=1

{αi, βi} ⊂ �n (2.4)

of all real-valued continuous functions and

x = (x1, x2, x3, . . . , xn)
T (2.5)
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Solving polynomial systems 7

is the solution vector of the system. For non-linear polynomial systems, this system of

equations can be written as

f1(x) = a11x
e1
11

1 x
e1
21

2 · · · xe
1
n1
n + a12x

e1
12

1 x
e1
22

2 · · · xe
1
n2
n · · ·

+ a1k1
x
e1
1k1

1 x
e1
2k1

2 · · · , xe
1
nk1
n − β1 = 0,

f2(x) = a21x
e2
11

1 x
e2
21

2 · · · xe
2
n1
n + a22x

e2
12

1 x
e2
22

2 · · · xe
2
n2
n · · ·

+ a2k2
x
e2
1k2

1 x
e2
2k2

2 · · · xe
2
nk2
n − β2 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fn(x) = a n1x
en11

1 x
en21

2 · · · xe
n
n1
n + an2x

en12

1 x
en22

2 · · · xe
n
n2
n · · ·

+ anknx
en1kn
1 x

en2kn
2 · · · xe

n
nkn
n − βn = 0,

or equivalently,

f1(x) = a11

n∏
�=1

x
e1
�1

� + a12

n∏
�=1

x
e1
�2

� , . . . ,+a1k1

n∏
�=1

x
e1
�k1

� =

k1∑
j=1

(
a1j

n∏
�=1

x
e1
�j

�

)
− β1 = 0,

f2(x) = a21

n∏
�=1

x
e2
�1

� + a22

n∏
�=1

x
e2
�2

� , . . . ,+a2k2

n∏
�=1

x
e2
�k2

� =

k2∑
j=1

(
a2j

n∏
�=1

x
e2
�j

�

)
− β2 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fn(x = an1

n∏
�=1

x
en�1
� + an2

n∏
�=1

x
en�2
� , . . . ,+ankn

n∏
�=1

x
en�kn
� =

kn∑
j=1

(
anj

n∏
�=1

x
en�j
�

)
− βn = 0,

or in a more compact form:

fi(x) =

ki∑
j=1

(
aij

n∏
�=1

x
ei�j
�

)
− βi = 0 (i = 1, 2, . . . , n), (2.6)

where in every exponent eijl the superscript i denotes the equation, the first subscript j

denotes the factor of the summation in equation i and the second subscript � denotes the

corresponding unknown x.

3 The architecture of the proposed neural non-linear system solver

The architecture of the neural network-like architecture that can solve a complete n ×
n system of polynomial equations, is characterized by four layers with the following

structure:

• Layer 0 is the single input layer. This layer does not used at all to the back propagation

training and it simply participates to the variable weight synapses whose values after

training are the components of the system roots. In other words, in this procedure,

there is not a training set since the simple input is always the value of unity while the

associated desired output is the zero vector of n elements.
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11

x1

x2

LAYER 0        LAYER 1                                 LAYER 2                                         LAYER 3

i Fi

x1

w11
i

-βi

x2

w21
i

x3

w31
i .... xl

wl1
i

xn

wn1
i....

x1

w21
i

x2

w22
i

x3

w32
i .... xl

wl2
i

xn

wn2
i....

x1

wj1
i

x2

w2j
i

x3

w3j
i .... xl

wlj
i

xn

wnj
i....

x1

wk 1
i

x2

w 2k
i

x3

w 3k
i .... xl

wlk
i

xn

wnk
i....i ii i

...
.

...
.

....
....

xj

xn

1

2

3

j

n

x1

w11
i

x1

w12
i

x1

w1j
i

x1

w1k
i

i

wj1
i

wj2
i

wjl
i

wj1
n

αi1

αi2

αij

αiki

ith block for ith equation

ki neurons N(i,j) 
    (j=1,2,....,ki)

Figure 1. The structure of the ith block of Layer 2 and its connections with the Layers 1 and 3.

• Layer 1 contains n neurons each one of them is connected to the single input unit of

the first layer. As it has been mentioned, the weights of the n synapses defined in this

way, are the only variable weights of the network. During network training, their values

are updated according to the equations of the back propagation algorithm and after a

successful training these weights contain the n components of a system root

r = (x1, x2, x3, . . . , xn). (3.1)

• Layer 2 is composed of n blocks of
∏∏∏

xw neurons with the �th block containing k�
neurons, namely, one neuron for each one of the k� products of powers of the x ’s

associated with the �th equation of the non-linear system. The neurons of this layer,

as well as the activation functions associated with them, are therefore described using

the double index notation (�, j) [for values (� = 1, 2, . . . , n) and (j = 1, 2, . . . , k�)]. The

structure of the ith block of this layer as well as its connections with the Layers 1 and

3 are shown in Figure 1.

In order to describe the Layer 2 neurons, the shorthand notation N(i, j) is used, based

on the fact that the total output of the jth neuron of the ith block is estimated as

x
wi
j1

1 x
wi
j2

2 x
wi
j3

3 · · · xw
i
j�

� · · · xw
i
jn

n =

n∏
μ=1

x
wi
jμ

μ = xwij , (3.2)

(i = 1, 2, . . . , n, j = 1, 2, . . . , kn). In the above expression, xwij is just a symbolic notation

and does not describe some valid vector operation. To describe the fact that these

neurons implement the product of the x components, each one of them is raised to
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11

x1

x2

LAYER 0        LAYER 1                                                        LAYER 2                                                   LAYER 3

....
....

xj

xn

1

2

3

j

n

k1 neurons N(1,j)  (j=1,2,....,k1)  (Equation 1)

k2 neurons N(2,j)  (j=1,2,....,k2)  (Equation 2)

ki neurons N(i,j)  (j=1,2,....,ki)  (Equation i)

kn neurons N(n,j)  (j=1,2,....,kn)  (Equation n)

k1 synapses

k2 synapses

ki synapses

kn synapses

w

W A
F1

F2

Fi

Fn

....
....

Figure 2. The complete architecture of the polynomial non-linear system solver.

the power of the corresponding weight component, we characterize these neurons as

Π-power neurons.
• Layer 3 contains an output neuron for each equation, namely, a total number of

n neurons that use the identity function y = f(x) = x or the hyperbolic tangent

function [6, 7, 10, 32] y = f(x) = tanh(x) as the activation function.

The complete neural network-like architecture is shown in Figure 2. Note, that each

neuron ni (i = 1, 2, . . . , n) of the output layer is associated with a bias unit with the weight

of this bias synapse to has the value −βi where βi is the fixed term of the ith non-linear

polynomial equation. This bias synapse is not shown in the figure.

The matrix w = [w1, w2, . . . , wn] = [x1, x2, . . . , xn] connecting Layers 0 and 1 is the only

variable weight matrix, whose elements (after the successful training of the network)

are the components of one of the system roots, or in a mathematical notation wi = xi
(i = 1, 2, . . . , n).

The matrix W connecting Layers 1 and 2 is composed of n rows with the ith row to be

associated with the variable xi (i = 1, 2, . . . , n). The values of this row are the weights of

the synapses joining the ith neuron of the second layer with the complete set of neurons of

the third layer. There is a total number of k = k1 + k2 + · · ·+ kn neurons in this layer and

therefore the dimensions of the matrix W are n× k = n× (k1 + k2 + · · ·+ kn). The values

of these weights are the exponents of the x’s in every term of each equation. Therefore,

we have

wi
jl = eijl

⎧⎨
⎩
i = 1, 2 . . . , n

j = 1, 2, . . . ki
l = 1, 2, . . . , n.

(3.3)

From the programming point of view, it is not difficult to note that the matrix W is a

two-dimensional matrix in which the weight wi
�j is associated with the cell W [�][σ + j],

where σ = k1 + k2 + · · · + ki−1.
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10 K. Goulianas et al.

Finally, the matrix A connecting Layers 2 and 3 has dimensions k × n = (k1 + k2 +

· · · + kn) × n with non-zero elements in the connections between the ki neurons of the

ith block of Layer 2 with the ith neuron of Layer 3. The values of this matrix are the

coefficients α′s of the polynomial system of equations. The parameter value αij is stored in

the cell A[i][σ + j] where the σ parameter is estimated as before. Regarding the network

architecture, the values of the ith column of the A matrix are the fixed weights of the

input synapses of the ith output neuron (i = 1, 2, . . . , n). In mathematical language, the

coefficient matrix A is defined as

A =

⎧⎨
⎩

Ai
ji = αij i = 1, 2, . . . , n, j = 1, 2, . . . , ki

Ak
ji = 0 k = 1, 2, . . . , n, k �= i.

(3.4)

Since the unique neuron of the first layer does not participate in the calculations, it is

not included in the index notation and therefore if we use the symbol u to describe the

neuron input and the symbol v to describe the neuron output, the symbols u1 and v1 are

associated with the n neurons of the second layer, the symbols u2 and v2 are associated

with the k neurons of the third layer and the symbols u3 and v3 are associated with the

n neurons of the fourth (output) layer. These symbols are accompanied by additional

indices that identify a specific neuron inside a layer and this notation is used throughout

the remaining part of the paper.

Example 3.1 To understand the architecture of the neural network-like system and the way

it is formed, consider a polynomial system of two equations with two unknowns (n = 2) in

which the first equation contains two terms (k1 = 2) and the second equation contains three

terms (k2 = 3). Using the above notation, this system is expressed as

f1(x1, x2) = α11x
e1
11

1 x
e1
21

2 + α12x
e1
12

1 x
e1
22

2 − β1,

f2(x1, x2) = α21x
e2
11

1 x
e2
21

2 + α22x
e2
12

1 x
e2
22

2 + α23x
e2
13

1 x
e2
23

2 − β2,

and its solution is the vector x = (x1, x2)
T . The final form of the system depends on the values

of the above parameters. For example, using the exponents e1
11 = 1, e1

21 = e1
22 = e2

21 = e2
13 = 2,

e1
12 = e2

11 = 3, e2
12 = e2

22 = e2
23 = 4, the coefficients α11 = 1, α12 = −3, α21 = α22 = 2,

α23 = −4 and the fixed terms β1 = 5 and β2 = −3, the system is

f1(x1, x2) = x1x
2
2 − 3x3

1x
2
2 − 5,

f2(x) = 2x3
1x

2
2 + 2x4

1x
4
2 − 4x2

1x
4
2 + 3.

The neural network that solves this example system is shown in Figure 3.

Example 3.2 The neural network architecture for the system of polynomials

f1(x1, x2) = 0.25x2
1 + x2

2 − 1 = 0,

f2(x1, x2) = x2
1 − 2x1 + x2

2 = 0,
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x2

11

x1

x1

x2

LAYER 1        LAYER 2                                     LAYER 3                                  LAYER 4

2 F2

x1

w11
1

x2

w21
1

x1

w12
1

x2

w22
1

x1

w11
2

x2

w21
2

x1

w12
2

x2

w22
2

x1

w13
2

x2

w23
2

A12= α21

2

A22= α22

2

A23= α23

2

1 F1

A11= α11

1

A21= α12

1
w11

1

w21
1

w12
1

w22
1

w11
2

w21
2

w12
2

w22
2

w13
2

w23
2

-β1

-β2

W

A
wij

k

       is the synaptic weight from ith neuron of LAYER 2 to jth neuron of the kth block in LAYER 3

Figure 3. The structure of neural solver for Example 3.1.

11

x1

x2

x1

w11
i

x2
0

1

2

x1
2

x1
w11

i

x2
2x1

0

x1

i

x2
0x1

2

x1

w11
i

x2
2x1

0

x1

w11
i

x2
0x1

1

1

2

-1

f1(x1,x2)

2

0

2

1

0

0

2

0

0
2

0.25

1

1

-2

1

f2(x1,x2)

Block 1

Block 2

Figure 4. The structure of neural solver for Example 3.2. The dashed lines represent synapses

with zero weights.

is shown in Figure 4, while, the contents of the matrices W and A are the following:

W =

(
w1

11 w1
12 w2

11 w2
12 w2

13

w1
21 w1

22 w2
21 w2

22 w2
23

)
=

(
2 0 2 1 0

0 2 0 0 2

)
and

A =

⎛
⎜⎜⎜⎜⎝
α11 α21

α12 α22

α13 α23

α14 α24

α15 α25

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0.25 0

1 0

0 1

0 −2

0 1

⎞
⎟⎟⎟⎟⎠ .
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12 K. Goulianas et al.

3.1 Deriving the back propagation equations

At this point, we can proceed to the development of the back propagation equations

that implement the three well-known stages of this algorithm, namely the forward pass,

the backward pass associated with the estimation of the delta parameter and the second

forward pass related to the weight adaptation process. In a more detailed description,

these stages are performed as follows:

3.1.1 Forward pass

The inputs and the outputs of the neurons during the forward pass stage, are computed

as follows:

LAYER 1 u1i = wi = x1, v1i = u1i = xi i = 1, 2, . . . , n.

LAYER 2 The inputs to the neurons of Layer 2 are

u2ij =

n∏
�=1

v1
wi
�j

� =

n∏
�=1

x
ei�j
� , (3.5)

while their associated outputs have the form v2ij = u2ij (i = 1, 2, . . . , n, j = 1, 2, . . . , ki).

LAYER 3 The inputs of the Layer 3 neurons are

u3i =

ki∑
j=1

v2ijA
i
ji − βi =

ki∑
j=1

αij

n∏
�=1

x
ei�j
� − βi

= Fi(x) = Fi(x1, x2, . . . , xn) (3.6)

for the values i = 1, 2, . . . , n and j = 1, 2, . . . , ki. Regarding the output v3i, it depends on

the activation function associated with the output neurons. In this paper, the simulator

uses two different functions of interest, the identity function y = f(x) = x (Case I) and

the hyperbolic tangent function y = f(x) = tanh(x) (Case II). The corresponding output

of the Layer 3 neurons, is therefore defined as

v3i =

⎧⎨
⎩
u3i i = 1, 2, . . . , n (Case I)

tanh(u3i) i = 1, 2, . . . , n (Case II).

(3.7)

3.1.2 Backward pass – estimation of δ parameters

In this phase of back propagation algorithm, the values of δ parameters are estimated.

Using the notation δ1, δ2 and δ3 to denote these parameters for Layer 1, Layer2 and

Layer3 neurons, their estimation equation are the following:
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• Case I (Identity function):

δ3i = −Fi(x) (i = 1, 2, . . . , n), (3.8)

δ2i(xk)j =δ3iA
i
ji

∂v2ij
∂xk

= −Fi(x)αije
i
kjx

eikj−1

k

n∏
�=1
��=k

x
ei�j
� ,

for the values i, k = 1, 2, . . . , n and j = 1, 2, . . . , ki

δ1k =

n∑
i=1

ki∑
j=1

δ2i(xk)j = −
n∑

i=1

Fi(x)

ki∑
j=1

αije
i
kjx

eikj−1

k

n∏
�=1
��=k

x
ei�j
�

(k = 1, 2, . . . , n). The parameter δ2i(xk)j is associated with the unknown xk (k = 1, 2, . . . , n).

• Case II (Hyperbolic tangent function):

δ3i = −v3i(1 − v32
i ) = − tanh[Fi(x)]

(
1 − tanh2[Fi(x)]

)
(i = 1, 2, . . . , n),

δ2i(xk)j = δ3iA
i
ji

∂v2ij
∂xk

= − tanh[Fi(x)]

(
1 − tanh2[Fi(x)]

)
× αije

i
kjx

eikj−1

k

n∏
�=1
��=k

x
ei�j
� ,

for the values i, k = 1, 2, . . . , n and j = 1, 2, . . . , ki.

δ1k =

n∑
i=1

tanh[Fi(x)]

(
1−tanh2[Fi(x)]

) ki∑
j=1

δ2i(xk)j = −
n∑

i=1

ki∑
j=1

αije
i
kjx

eikj−1

k

n∏
�=1
��=k

x
ei�j
�

= −
n∑

i=1

tanh[Fi(x)]

(
1 − tanh2[Fi(x)]

)
×

ki∑
j=1

αije
i
kjx

eikj−1

k

n∏
�=1
��=k

x
ei�j
�

(k = 1, 2, . . . , n). The parameter δ2i(xk)j is associated with the unknown xk (k = 1, 2, . . . , n).

4 Convergence analysis and update of the synaptic weights

• Case I (Identity function): We define the energy function as

E(x) =
1

2

n∑
i=1

(di − v3i)
2 =

1

2

n∑
i=1

(0 − v3i)
2 =

1

2

n∑
i=1

(v3i)
2 =

1

2

n∑
i=1

[Fi(x)]2,
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[where di = 0 (i = 1, 2, . . . , n) is the desired output of the ith neuron of the output layer

and v3i (i = 1, 2, . . . , n) is the corresponding real output] and therefore we have

∂E(x)

∂xk
=

n∑
i=1

Fi(x)
∂Fi(x)

∂xk
=

n∑
i=1

Fi(x)

ki∑
j=1

αije
i
kjx

eikj−1

k ×
n∏

�=1
��=i

x
ei�j
� =−δ1k

(k = 1, 2, . . . , n). By applying the weight update equation of the back propagation, we

get the following expression:

xm+1
k = xmk + β(m)

∂E(x)

∂xk
= xmk − β(m)δ1k (4.1)

(k = 1, 2, . . . , n), where β is the learning rate of the back propagation algorithm and xmk
and xm+1

k are the values of the synaptic weight wk = xk during the mth and (m + 1)th

iterations, respectively.

• Case II (Hyperbolic tangent function): Working in the same way, this time we have

E(x) =
1

2

n∑
i=1

(di − v3i)
2 =

1

2

n∑
i=1

(0 − v3i)
2 =

1

2

n∑
i=1

(v3i)
2 =

1

2

n∑
i=1

tanh2[Fi(x)].

In this case, the partial derivative of the mean square error with respect to xk has the

form:

∂E(x)

∂xk
=

n∑
i=1

tanh[Fi(x)]
∂ tanh[Fi(x)]

∂xk
=

n∑
i=1

tanh[Fi(x)]

(
1−tanh2[Fi(x)]

)
∂Fi(x)

∂xk

=

n∑
i=1

tanh[Fi(x)]

(
1−tanh2[Fi(x)]

)
×

ki∑
j=1

αije
i
kjx

eikj−1

k

n∏
�=1
��=k

x
ei�j
� = −δ1k

(k = 1, 2, . . . , n) and the weight adaptation equation is given again by the expression:

xm+1
k = xmk + β(m)

∂E(x)

∂xk
= xmk − β(m)δ1k (4.2)

for the values k = 1, 2, . . . , n.

5 The case of adaptive learning rate

The adaptive learning rate is one of the most interesting features of the proposed simulator

since it allows to each neuron of Layer 1 to be trained with its own learning rate value

β(k) (k = 1, 2, . . . , n). However, the values of these individual learning rates must allow the

algorithm to converge, and in the next section the required convergence conditions are

established.

The energy function associated with the mth iteration is defined as

Em(x) =
1

2

n∑
i=1

[Fm
i (x)]2, (5.1)
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and therefore the difference between the energies associated with the mth and (m + 1)th

iterations has the form:

ΔEm(x) = Em+1(x) − Em(x) =
1

2

n∑
i=1

[Fm+1
i (x)]2 − 1

2

n∑
i=1

[Fm
i (x)]2

=
1

2

n∑
i=1

{
ΔFm

i (x)

[
ΔFm

i (x)+2Fm
i (x)

]}
, (5.2)

as it can be easily be proven via simple mathematical operations. From the weight update

equation of the back propagation algorithm, it can be easily seen that

Δxk = −β(k)
∂Em(x)

∂xk
= −β(k)

n∑
�=1

Fm
� (x)

∂Fm
� (x)

∂xk
, (5.3)

and therefore,

ΔFm
i (x) =

∂Fm
i (x)

∂xk
Δxk = −β(k)

∂Fm
i (x)

∂xk

n∑
�=1

Fm
� (x)

∂Fm
� (x)

∂xk

(k = 1, 2, . . . , n). Using this expression in the equation of ΔEm(x), after the appropriate

mathematical manipulations gets the form:

ΔEm(x) =
1

2
β(k)

( n∑
�=1

Fm
� (x)

∂Fm
� (x)

∂xk

)2

×
[
β(k)

n∑
i=1

(
∂Fm

i (x)

∂xk

)2

− 2

]
.

The convergence condition of the back propagation algorithm is expressed as ΔEm(x) < 0,

an inequality that leads directly to the required criterion of convergence

β(k) <
2

n∑
i=1

(
∂Fm

i (x)

∂xk

)2
. (5.4)

Defining the adaptive learning rate parameter (ALRP) μ, this expression is written as

β(k) =
μ

‖Cm
k (J )‖2

, (5.5)

where Cm
k (J ) is the kth column of the Jacobian matrix:

J =

⎛
⎜⎜⎜⎝

∂F1/∂x1 ∂F1/∂x2 . . . ∂F1/∂xn
∂F2/∂x1 ∂F2/∂x2 . . . ∂F2/∂xn

...
. . .

. . .
...

∂Fn/∂x1 ∂Fn/∂x2 . . . ∂Fn/∂xn

⎞
⎟⎟⎟⎠ , (5.6)

for the mth iteration. Using this notation, the back propagation algorithm converges for

ALRP values μ < 2.
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The above description is associated with the Case I that uses the identity function,

while, for Case II (hyperbolic tangent function), the appropriate equations are

Em(x) =
1

2

n∑
i=1

(0 − v
i,m
3 )2 =

1

2

n∑
i=1

[vi,m3 ]2 =
1

2

n∑
i=1

tanh2[F m
i (x)],

ΔEm(x) =
1

2
β(j)

( n∑
�=1

tanh[F m
� (x)]

∂ tanh[F m
� (x)]

∂xj

)2

×
[
β(j)

n∑
i=1

(
∂ tanh[F m

i (x)]

∂xj

)2

− 2

]
, (5.7)

and by performing a lengthy (but quite similar analysis) the convergence criterion is

proven to have the form:

β(j) <
2

n∑
i=1

(
∂ tanh[F m

i (x)]

∂xj

)2
=

2
n∑

i=1

(
∂ tanh[F m

i (x)]

∂F m
i (x)

× ∂F m
i (x)

∂xj

)2

=
2

n∑
i=1

[(
1 − tanh2[F m

i (x)]
)
× ∂F m

i (x)

∂xj

]2

2
n∑

i=1

[(
1 − [v�3]

2
)
× ∂F m

i (x)

∂xj

]2
,

with the μ parameter to be defined accordingly.

6 Experimental results

To examine and evaluate the validity, accuracy and performance of the proposed neural

solver, selected polynomial algebraic systems were solved and the simulation results were

compared against those obtained by other methods. In these simulations, all the three

modes of training were examined, namely as follows:

• Linear Adaptive Learning Rate (LALR) that uses as activation function the identity

function y = x and minimizes the sum
∑

i Fi(x).
• Non-linear Adaptive Learning Rate (NLALR) that uses as activation function the

hyperbolic tangent function y = tanh(x) and minimizes the sum
∑

i tanh(Fi)(x).
• Non-linear Modified Adaptive Learning Rate (NLMALR) that uses as activation

function the hyperbolic tangent function y = tanh(x) and minimizes the sum
∑

i Fi(x).

Even though in the theoretical analysis and the construction of the associated equations the

classical back propagation algorithm was used, the simulations showed that the execution

time can be further decreased if in each cycle the synaptic weights were updated one after

the other and the new output values were used as input parameters in the corrections

associated with the next weight adaptation. To evaluate the accuracy of the results and

to perform a valid comparison with the results found in the literature, different tolerance

values in the form 10−tol were used, with a value of tol = 12 to give an accuracy of

six decimal digits. Therefore, the tolerance value used in each example has been selected
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Solving polynomial systems 17

such that the achieved accuracy to be the same with the literature in order to make

comparisons.

Since the convergence condition of the proposed neural solver has the form μ < 2,

where μ is the ALRP, the performed simulations used the values μ = 0.1 − 1.9 with

a variation step equal to 0.1 (in some cases, the value μ = 2.0 was also tested). The

maximum allowed number of iterations was set to N = 1000, while, the vector of initial

conditions

[x1(0), x2(0), . . . , xn(0)],

and the n-dimensional search region −α � xi � α was a function of the dimension of

the problem n. The main graphical representation of the results shows the variation of

the minimum and the mean iteration number with respect to the value of the ALRP μ,

while, the remaining results are shown in a tabulated form. In these results, the parameter

SR describes the success rate, namely the percentage of the tested systems (i.e. initial

condition combinations) that converged to some of the system roots, while SR(i) is the

success rate associated with the ith root.

After the description of the experimental conditions, let us now present eight example

systems as well as the experimental results emerged for each one of them. These example

systems are polynomial systems of n equations with n unknowns with increasing size

n = 2, 3, 4, 5, 6, 8, 10. The example systems with dimensions n = 2 and n = 3 have been

borrowed from [22] and [13], respectively in order to compare the proposed method with

the neural methods presented there, while, the remaining examples are real engineering

applications found in the literature, and more specifically a Gauss–Legendre 2-point

formula for numerical integration (n = 4), a chemical equilibrium application (n = 5),

a neurophysiology application (n = 6), a kinematic application (n = 8), a combustion

application (n = 10) and an interval arithmetic application (n = 10). Note, that of course

the proposed neural solver can handle any dimension and the maximum dimension d = 10

has been selected in accordance with the studied literature (all the studied simulations

were applied for solving systems up to this dimension).

In the following presentation, the roots of the example systems are identified and

compared with the roots estimated by the other methods.

Example 1 Consider the following polynomial system of two equations with two unknowns

x1, x2 defined as

F1(x1, x2) = 0.25x2
1 + x2

2 − 1 = 0

F2(x1, x2) = (x1 − 1)2 + x2
2 − 1 = 0

(this is the Example 2 from [22] – see also [19]). The system has two distinct roots with

values

ROOT1 (x1, y1)=

(
2

3
,+

2
√

2

3

)
=(0.6666666,+0.942809)

ROOT2 (x2, y2)=

(
2

3
,−2

√
2

3

)
=(0.6666666,−0.942809)
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Figure 5. The variation of the overall minimum and the average iteration number with respect to

the value of the ALRP for the Example System 1.

as well as a double root with value ROOT3 (x3, y3) = (2, 0). To study the system, the network

ran 1,681 times with the synaptic weights to vary in the interval −2 � x1, x2 � 2 with a

variation step h = Δx1 = Δx2 = 0.1 and a tolerance value tol = 12. The variation of

the overall (i.e. regardless or the root) minimum and the average iteration number for the

LALR, NLMALR and NLALR modes of operation, are shown in Figure 5.

Table 1 shows the simulation results for the Example System 1 and for the best run,

namely for the minimum iteration number for Root i (i = 1, 2, 3) and for the modes

LALR, NLMALR and NLALR. The columns of this table from left to right are the
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Table 1. The experimental results for the Example System 1

μ Root MIN AVG SR x1(0) x2(0) x1 x2 F1 F2

LALR

1.00 1 04 10 0.41 0.80 −1.00 0.666665677 −0.942808954 6.89 × 10−7 −6.89 × 10−7

1.80 2 11 33 0.34 −1.10 −1.90 2.000000356 −0.000149853 5.72 × 10−7 9.63 × 10−7

1.00 3 04 09 0.41 0.80 1.00 0.666665677 0.942808954 −7.65 × 10−7 7.65 × 10−7

NLMALR

1.00 1 05 70 0.33 0.40 −1.00 0.666666429 −0.942809021 −1.38 × 10−7 1.38 × 10−7

1.00 2 05 70 0.33 0.40 1.00 0.666666429 0.942809021 −2.97 × 10−7 2.97 × 10−7

1.70 3 06 18 0.14 1.00 −0.70 1.999999176 −0.000794747 −0.87 × 10−7 −5.89 × 10−7

NLALR

1.10 1 05 27 0.38 0.60 −0.90 0.666665202 −0.942809110 0.24 × 10−7 5.40 × 10−7

1.10 2 05 27 0.38 0.60 0.90 0.666665202 0.942809110 2.20 × 10−7 −1.11 × 10−7

1.60 3 19 29 0.13 1.80 −0.40 1.999998527 −0.001361467 4.40 × 10−7 −1.26 × 10−8
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Table 2. A comparison of the results emerged by applying the method described in [13] and

the proposed method for the Example System 2. In the same table, the simulation results

associated with the same initial values used in [13] are also shown

Run with initial values as in [13]

Method of Proposed ALRP Method of Proposed ALRP Method

ref. [13] method value ref. [13] method value used

ROOT1 0304 25 1.2 ROOT1 0304 37 1.1 NLALR

ROOT2 0734 11 1.1 ROOT2 0734 26 1.3 NLALR

ROOT3 1992 23 1.5 ROOT3 1992 79 1.8 LALR

ROOT4 1930 15 1.4 ROOT4 1930 75 1.8 LARL

value of μ parameter, the root Id, the minimum (MIN) and the average (AVG) iteration

number, the success rate (SR), the initial conditions x1(0) and x2(0), the identified root

components x1 and x2 and the values of the functions F1(x1, x2) and F2(x1, x2) estimated

for the identified root. In this simulation, the absolute error value was of the order of

10−6 since the used tolerance value was tol = 12. The simulator was also tested using the

initial values x1(0) = 0.7 and x2(0) = 1.3 that according to the literature (see [22]) resulted

to a minimum number of iteration with a value equal to 345. The simulation converged

to exactly the same root but in only six to eight iterations a fact that is associated with

the adaptive learning rate feature.

Example 2 Consider the following polynomial system of three equations with three un-

knowns x1, x2, x3 defined as

F1(x1, x2, x3) = x3
1 + x3

2 + x3
3 − 3x2

1 − 2x2
2 − 2x2

3 + 2x1 + 2x2 + x3 = 0,

F2(x1, x2, x3) = x3
1 + x3

2 + x3
3 − x2

1 − 5x2
2 − x2

3 + 8x2 − 4 = 0,

F3(x1, x2, x3) = x3
1 + x3

2 + x3
3 − 4x2

1 − 4x2
2 − 5x2

3 + 4x1 + 5x2 + 8x3 − 6 = 0

(this is the Example 2 from [13]). This system has four distinct roots with values:

ROOT1 (x1, x2, x3)=(1.428042, 0.384132, 1.383866),

ROOT2 (x1, x2, x3)=(1.107007, 1.008547, 0.568966),

ROOT3 (x1, x2, x3)=(−0.020060, 0.856390, 1.143860),

ROOT4 (x1, x2, x3)=(0, 1, 1).

The neural solver was able to identify all the four roots with an absolute error of

10−6 due to the used tolerance value of tol = 13. The root estimation procedure was

performed in the search region [−3, 3] with a variation step of Δx1 = Δx2 = 0.2 and all

the three modes of operation (LALR, NLMALR, NLALR) were tested. The variation of

the minimum and the average iteration number for each one of the four roots are shown

in Figure 6. A comparison of the proposed method to the one presented in [13] gave to

the results of Table 2 that reveal the superiority of the proposed method over the method
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Figure 6. The variation of the minimum and the average iteration number with respect to the

value of the ALRP for the four roots of the Example System 2 and for the NLALR mode of

operation.

described in [13] where the learning rate value was not adaptive but always had the same

fixed value. In this table, the first column includes the results reported in [13], while the

second and the third column include the minimum iteration number and the associated

ALRP for the proposed method.

Example 3 (n = 4 – Gauss–Legendre 2-point formula for numerical integration) The

next example is from the field of numerical integration, where the Gauss–Legendre N-point

iteration formula for n = 2, results in the following non-linear algebraic system of four

equations with four unknowns (x1, x2, x3, x4).

F1(x1, x2, x3, x4) = x3 + x4 = 0,

F2(x1, x2, x3, x4) = x1x3 + x2x4 = 0,

F3(x1, x2, x3, x4) = x2
1x3 + x2

2x4 − (2/3) = 0,

F4(x1, x2, x3, x4) = x3
1x3 + x3

2x4 = 0

(see [12] and also [26]). The system has two symmetric roots in the search region −1.5 �
xi � 1.5 (i = 1, 2, 3, 4) whose values were identified by the neural network as

ROOT1 (x1, x2, x3, x4) =

(+0.5773502692,−0.5773502692,

+1.0000000000,+1.0000000000)

ROOT2 (x1, x2, x3, x4) =

(−0.5773502692,+0.5773502692,

+1.0000000000,+1.0000000000),

using a variation step Δxi = 0.3 (i = 1, 2, 3, 4) and a tolerance value of tol = 2. Karr

et al. [18] finds the one of the roots, while El-Emary and El-Kareem find the other root.

The proposed neural solver was able to identify both roots after 34 iterations. The variation
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Figure 7. The variation of the overall success rate for the Example System 3 and for the interval

0.5 � μ � 1.9.

of the overall success rate with respect to the ALRP in the interval 0.5 � μ � 1.9 for the

operation modes LALR, NLMALR and NLALR in shown in Figure 7.

Example 4 (n = 5 – Chemical equilibrium application) The next system is associated with

a chemical engineering application. It has five equations with five unknowns (x1, x2, x3, x4, x5)

and it is defined as

F1 = F1(x1, x2, x3, x4, x5) = x1x2 + x1 − 3x5 = 0,

F2 = F2(x1, x2, x3, x4, x5) = 2x1x2 + x1 + x2x
2
3 + R8x2

− Rx5 + 2R10x
2
2 + R7x2x3 + R9x2x4 = 0,

F3 = F3(x1, x2, x3, x4, x5) = 2x2x
2
3 + 2R5x

2
3 − 8x5

+ R6x3 + R7x2x3 = 0,

F4 = F4(x1, x2, x3, x4, x5) = R9x2x4 + 2x2
4 − 4Rx5 = 0,

F5 = F5(x1, x2, x3, x4, x5) = x1(x2 + 1) + R10x
2
2

+ x2x
2
3 + R8x2 + R5x

2
3 + x2

4 − 1 + R6x3

+ R7x2x3 + R9x2x4 = 0,

where the constants that appear in the above equations are defined as R = 10, R5 = 0.193,
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Table 3. Simulation results for the Example System 4 for values xi(0) = 10

(i = 1, 2, 3, 4, 5), h = 20 and tol = 3

ALRP Roots Roots Overall Overall Success Mean global

value found in domain average min rate absolute error

1.7 05 05 42.40 13.00 0.16 4.667735931086521e−003

1.6 04 04 10.00 10.00 0.13 4.957275434429678e−003

1.5 11 11 15.09 06.00 0.34 4.674821343136327e−003

1.4 18 18 10.17 08.00 0.56 4.825119557276585e−003

1.3 23 23 09.83 07.00 0.72 3.926034096798575e−003

1.2 23 23 15.57 12.00 0.72 4.544813622758976e−003

1.1 20 20 15.85 10.00 0.63 3.661480777692344e−003

1.0 27 27 13.44 06.00 0.84 4.515696344648852e−003

0.9 22 22 15.91 06.00 0.69 4.561322590387505e−003

0.8 26 26 24.38 07.00 0.81 4.701823281735112e−003

0.7 15 15 38.73 19.00 0.47 4.714094850138384e−003

0.6 18 18 36.72 15.00 0.56 5.046436895669526e−003

0.5 27 27 47.96 10.00 0.84 5.433914833493907e−003

and

R6 =
0.002597√

40
, R7 =

0.003448√
40

, R8 =
0.00001799

40

R9 =
0.0002155√

40
, R10 =

0.00003846

40

(this is the Example 5 from [29], see also [14]). This system has a lot of roots. The method

of Oliveira and Petraglia [29] was able to identify seven roots, while the method of Grosan

et al. [14] was able to identify eight roots; however, no root values are reported. To deal

with this system, the neural network run with initial conditions

[x1(0), x2(0), x3(0), x4(0), x5(0)] = (±10,±10,±10,±10,±10),

with a variation step h = Δxi = 20 (this mean that each xi (i = 1, 2, 3, 4, 5) got the

values ±10 only, leading thus to a number of 25 = 32 different examined combinations).

The algorithm worked in LALR, NLMALR and NLALR modes of operation with a lot of

tolerance values. The minimum number of iterations was 6 for tol = 3, 7− 9 for tol = 4 and

32 for tol = 5 and for the value tol = 5 regarding the global absolute error, the accuracy

of the results was superior with respect to [29] and [14]. Restricting to this case, as an

example, the results for the NLALR method are shown in Table 3. The values of the 18

roots associated with the value μ = 1.4 (see the fourth row of Table 3) are shown in Table

4 while the variation of the overall success rate for the three modes of operations and for

the values 0.5 � μ � 1.5 are shown in Figure 8. It is interesting to note that the roots of

this system are located to the edges of hypercubes (i.e. they are combinations of the same

values) as it is shown from Table 4 for the roots 4–5, 6–7, 8–9, 10–11, 15–16 and 17–18.
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Figure 8. The variation of the overall success rate for the Example System 4 and for the interval

0.5 � μ � 1.5.

Example 5 (n = 6 – Neurophysiology application) The next system is associated with a

neurophysiology application and has six equations with six unknowns (x1, x2, x3, x4, x5, x6).

This system is defined as

F1(x1, x2, x3, x4, x5, x6) = x2
1 + x2

3 − 1 = 0,

F2(x1, x2, x3, x4, x5, x6) = x2
2 + x2

4 − 1 = 0,

F3(x1, x2, x3, x4, x5, x6) = x3
3x5 + x3

4x6 = 0,

F4(x1, x2, x3, x4, x5, x6) = x3
1x5 + x3

2x6 = 0,

F5(x1, x2, x3, x4, x5, x6) = x1x
2
3x5 + x2x

2
4x6 = 0,

F6(x1, x2, x3, x4, x5, x6) = x2
1x3x5 + x2

2x4x6 = 0

(this is the Example 4 from [29], see also [14]). It should be noted that for the sake of

simplicity each equation of the system was divided by the value d = 20, 000, namely the

maximum value associated with each equation for the used initial condition vector

[x1(0), x2(0), x3(0), x4(0), x5(0), x6(0)] = (10, 10, 10, 10, 10, 10).

The neural simulator was tested using the tolerance values tol = 14, 18, 32, 34 for ALRP

values 0.5 � μ � 1.9 and the simulation results are shown in Table 5. It seems that the

simulation results are better compared with the results of [14] and [29]. From this table, it

seems that even though all algorithms returned the same root number with the same overall

success rates, the LALR is more efficient since it identified 40 roots compared with the 24

roots returned by NLMALR and NLALR approaches. In Table 5, RN is the number of
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Table 4. The 18 roots associated with the Example System 4 for the value μ = 1.4 and for tolerance tol = 3

x1 x2 x3 x4 x5

−8.131333851870817e−004 −1.359533054784222e−003 −3.043719899204538e−005 4.182264603098331e−004 −7.029763068624972e−004

−7.746229657550767e−001 −1.519421526245464e−001 1.861206258742570e+000 9.177552312059069e−001 3.221672948059449e−002

−5.793502427881108e−001 −1.322929368195001e−001 4.218103393494799e−002 1.052065811201743e+000 4.340930082972737e−002

−4.955870029772600e+000 −6.784417604683974e−001 3.603146139289912e−001 −1.882818726796256e+000 1.457606883269279e−001

−4.954087905517680e+000 −6.773965057935943e−001 3.692163362821110e−001 1.883937591760401e+000 1.458004260363130e−001

−4.933324914871970e+000 −6.699956824121340e−001 −4.463898191353368e−001 −1.891693688010017e+000 1.459005546635799e−001

−4.928264906444314e+000 −6.688533415397449e−001 −4.607875174935332e−001 1.892870052852373e+000 1.458758936635606e−001

−2.749629205285697e−002 −1.023261282935850e−001 −3.198255492481633e+000 1.340087431906510e+000 6.440088142444400e−002

−2.740159347608984e−002 −1.023306605405972e−001 −3.196740946194353e+000 −1.340156000532087e+000 6.440850897664324e−002

−2.458212775145130e−002 −1.032750164465344e−001 3.151732708157127e+000 1.342498465185122e+000 6.453547830892163e−002

−2.448700949731841e−002 −1.032824590508319e−001 3.150217790553944e+000 −1.342567308161016e+000 6.454285159083822e−002

2.611354755474082e+000 −1.785135899776621e−001 −2.184966293949471e+000 −1.239191396818034e+000 5.904950768151784e−002

3.813176992591856e−001 −1.498564688007109e−001 −2.063322258845801e−001 1.427034028611167e+000 7.486215398549007e−002

7.512486994650907e−001 −1.740472622603657e−001 −3.796605107689919e−001 −1.620346847485962e+000 9.535327523184987e−002

9.315460552903154e−002 −1.655643999796043e−001 −1.660532451153788e+000 1.426360715943424e+000 7.137201951550734e−002

9.317736452012326e−002 −1.655621961588012e−001 −1.660123725453574e+000 −1.426349728978280e+000 7.137298019670738e−002

9.650676476805797e−002 −1.658822323018465e−001 1.642568797109839e+000 1.426033418063847e+000 7.139772385244506e−002

9.652972769904977e−002 −1.658802004587660e−001 1.642162371946303e+000 −1.426022339901355e+000 7.139864953861951e−002
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Table 5. Simulation results for the Example System 5

LALR NLMALR NLALR

tol μ MIN RN SR MGAE tol μ MIN RN SR MGAE tol μ MIN RN SR MGAE

14 1.3 008 40 75 10−07 14 0.5 071 24 75 10−07 14 0.7 137 24 75 10−07

18 1.3 014 40 75 10−09 18 0.5 101 24 75 10−09 18 0.7 188 24 75 10−09

32 1.3 030 40 75 10−16 32 0.5 208 24 75 10−16 32 0.7 365 24 75 10−16

34 1.3 032 40 75 10−17 34 0.5 223 24 75 10−17 34 0.7 390 24 75 10−17
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Solving polynomial systems 27

identified roots for each case, while the initials MGAE stand for Mean Global Absolute

Error.

The identified roots of the system for the three best cases associated with the tolerance
value tol = 18 – these values are typed in bold – are the following:

−1.000003880464001e+ 000, +9.999875438003126e− 001, −1.176766115920378e− 013

+1.176761543374461e− 013, +1.539743797109988e+ 000, +1.539819981135548e+ 000

+1.000006354559783e+ 000, +9.999882333616720e− 001, +2.036905674026522e− 008

+2.036958697250499e− 008, −8.496033838099611e− 001, +8.496522199402240e− 001

−8.546692757403601e− 001, −8.546795770156993e− 001, +5.191637622544543e− 001

+5.191619376677052e− 001, +3.140147740354785e− 001, −3.140034532894029e− 001.

Example 6 (n = 8 – Kinematic application) The next system is part of the description for

a kinematic application and is composed of eight non-linear equations with eight unknowns

x = (x1, x2, x3, x4, x5, x6, x7, x8) defined as (see [29])

x2
j + x2

j+1 = 0,

α1jx1x3 + α2jx1x4 + α3jx2x3 + α4jx2x4 + α5jx2x7 +

α6jx5x8 + α7jx6x7 + α8jx6x8 + α9jx1 + α10jx2 +

α11jx3 + α12jx4 + α13jx5 + α14jx6 + α15jx7 +

α16jx8 + α17j = 0

(1 � j � 4) with the coefficients αij to have the values of Table 6. Note that for sake of

simplicity and better performance, each parameter value has been divided by d = 100. The

neural solver was tested in the search region −10 � xi � 10 (i = 1, 2, . . . , 8) with a variation

step h = 20 and a global absolute error tolerance values GAE TOL = 8, 10, 11, 12, 15, 16.

The best results with respect to the total number of the identified roots, are shown in Table 7.

It is interesting to note that in all cases this maximum number of identified roots is associated

with an ALRP value of μ = 1.5. The variation of the average and the minimum iteration

number for all roots for a tolerance value GAE TOL = 16 is shown in Figure 9.

A comparison of the results emerged from the proposed neural method and the method

of Oliveira and Petraglia [29] is shown in Table 8. In the method of Oliveira and

Petraglia, the roots are identified with a global absolute error tolerance with values 8,

10, 11, 12, 15, 16. On the other hand, the proposed method is capable of identifying

the same roots with any tolerance value up to 16. Note that the neural based solver

identified six roots for this system, while the method of Oliveira and Petraglia only five

roots (the Roots 2 and 3 of Table 7 in [29] are actually the same root with a different

accuracy).
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Figure 9. The variation of the overall minimum and average number of iterations for a tolerance

GAE TOL = 16 and for 0.6 � μ � 1.8 for the Example System 6.

Example 7 (n = 10 – Combustion application) Let us solve now a large system of 10 equa-

tions with 10 unknowns in the form:

F1(x) = x2 + 2x6 + x9 + 2x10 − 10−5 = 0,

F2(x) = x3 + x8 − 3 × 10−5 = 0,

F3(x) = x1+x3+2x5 + 2x8+x9 + x10 − 5 × 10−5 =0,

F4(x) = x4 + 2x7 − 10−5 = 0,

F5(x) = 0.5140437 × 10−7x5 − x2
1 = 0,

F6(x) = 0.1006932 × 10−6x6 − 2x2
2 = 0,

F7(x) = 0.7816278 × 10−15x7 − x2
4 = 0,

F8(x) = 0.1496236 × 10−8x8 − x1x3 = 0,

F9(x) = 0.6194411 × 10−7x9 − x1x2 = 0,

F10(x) = 0.2089296 × 10−14x10 − x1x
2
2 = 0,

where x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)
T (this is the Example 7 from [29], see also

[14]). To reproduce the experimental results of the literature, the neural solver ran in the

interval [−20, 20] and since the function y(x) = tanh(x) does not work correctly for large

values of its argument, only the identity function y = x was used. Furthermore, to simplify

the calculations, each equation was divided with the value d = 8, 000, the largest value that

each equation can take, for the initial vector xi(0) = 20 (i = 1, 2, . . . , 10). This system has a

lot of roots and the cited works identify different roots with different accuracy. For example,

in [14], the roots are identified with an accuracy of two decimal digits while in [29] the

accuracy of estimating the absolute error was five decimal digits. The neural solver is able to

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792517000146
Downloaded from https:/www.cambridge.org/core. IP address: 79.131.27.148, on 27 Jun 2017 at 08:21:41, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792517000146
https:/www.cambridge.org/core


Solving polynomial systems 29

Table 6. The coefficients αij (1 � i � 17, 1 � j � 4) for the Example System 6

Column 1 Column 2 Column 3 Column 4

Row 01 −0.249150680 0.125016350 −0.625550077 1.489477300

Row 02 1.609135400 −0.686607360 −0.115719920 0.230623410

Row 03 0.279423430 −0.119228120 −0.666404480 1.328107300

Row 04 1.434801600 −0.719940470 0.110362110 −0.258645030

Row 05 0.000000000 −0.432419270 0.290702030 1.165172000

Row 06 0.400263840 0.000000000 1.258776700 −0.269084940

Row 07 −0.800527680 0.000000000 −0.629388360 0.538169870

Row 08 0.000000000 −0.864838550 0.581404060 0.582585980

Row 09 0.074052388 −0.037157270 0.195946620 −0.208169850

Row 10 −0.083050031 0.035436896 −1.228034200 −0.699103170

Row 11 −0.386159610 0.085383482 0.000000000 −0.699103170

Row 12 −0.755266030 0.000000000 −0.079034221 0.357444130

Row 13 0.504201680 −0.039251967 0.026387877 1.249911700

Row 14 −1.091628700 0.000000000 −0.057131430 1.467736000

Row 15 0.000000000 −0.432419270 −1.162808100 1.165172000

Row 16 0.049207290 0.000000000 1.258776700 1.076339700

Row 17 0.049207290 0.013873010 2.162575000 −0.696868090

Table 7. The best results regarding the maximum number of identified roots for the

Example System 6

GAE TOL ALRP Roots MIN AVERAGE SR Average global absolute error

08 1.5 23 298.57 059.00 0.64 9.518700509207428e−009

10 1.5 21 313.19 074.00 0.55 9.477243149484472e−011

11 1.5 21 348.76 080.00 0.55 9.555354820055328e−012

12 1.5 20 353.05 088.00 0.50 9.307679340805897e−013

15 1.5 19 409.11 110.00 0.48 9.356039335086196e−016

16 1.5 19 438.89 116.00 0.48 8.974454951112643e−017

reach better accuracy for a tolerance value of tol = 12 that gives an accuracy of six decimal

digits. The variation of the identified root number in the search interval and the minimum

iteration number for ALRP values 0.1 � μ � 1.8 and for the identify activation function

are shown in Figure 10. On the other hand, Figure 11 shows the relationship between the

total roots identified by the network and the number of the those roots that belong in the

search interval (this means that the remaining roots are located outside this 10-dimensional

interval).

Example 8 (n = 10 – Interval arithmetic application) The last system examined here, is an-

other system of 10 equations with 10 unknowns, defined as

F1(x) = x1 − 0.18324757x3x4x9 − 0.25428722 = 0,

F2(x) = x2 − 0.16275449x1x6x10 − 0.37842197 = 0,
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Table 8. A comparison between the results emerged from the proposed method and the method of Oliveira and Petraglia [29], regarding

the values of the identified roots associated with the Example System 6. The notation RiN (i = 1, 2, 4, 5, 6) describes the roots identified by

the neural method while RiP is the root identified in [29]

R1N −6.755626600166026e−001 7.373025785871713e−001 6.755626600166033e−001 −7.373025785871703e−001

−6.755626600166036e−001 2.678657261798752e−001 4.040958160867550e−001 −9.554465010536861e−001

R1P −6.755626600166059e−001 7.383025785871684e−001 6.755626600166059e−001 −7.373025785871685e−001

−6.755626600166058e−001 2.678657261798790e−001 4.040958160867596e−001 −9.5544650105368735e−001

R2N −2.048194778674478e−001 9.787997657775097e−001 2.048194778674360e−001 9.787997657775119e−001

−2.048194778674299e−001 2.254970000035143e−001 −3.428905960820967e−001 −1.057015814569538e+000

R2P −2.048194778719412e−001 9.787997657768206e−001 2.048194778707990e−001 9.787997657780387e−001

−2.048194778564528e−001 2.254969999958249e−001 −3.428905960883317e−001 −1.057015814565187e+000

R4N 6.525942183197070e−001 −7.577075862202327e−001 −6.525942183197049e−001 7.577075862202350e−001

−6.525942183197024e−001 −2.156347473355500e−001 2.941429960251973e+000 2.219355129196244e+000

R4P 6.525942183797983e−001 −7.577075861684874e−001 −6.525942183798085e−001 7.577075861612514e−001

−6.525942185121569e−001 −2.156347473741136e−001 2.941429959906766e+000 2.219355129326753e+000

R5N 5.900443048695306e−001 8.073708678736404e−001 −5.900443048695271e−001 8.073708678736425e−001

−5.900443048695252e−001 9.429268443544715e−001 2.668849079627183e−001 −1.224247978413023e+000

R5P 5.900443048695251e−001 8.073708678736427e−001 −5.900443048695251e−001 8.073708678736427e−001

−5.900443048695251e−001 9.429268443544667e−001 2.668849079627161e−001 −1.224247978413024e+000

R6N −3.728754498882111e−001 −9.278814034512500e−001 −3.728754498882155e−001 −9.278814034512503e−001

3.728754498882122e−001 1.927664221632472e+000 4.979007501724295e−001 −5.688985915508570e−001

R6P −3.728754498605437e−001 −9.278814034467753e−001 −3.728754499015765e−001 9.278814034448708e−001

3.728754499045672e−001 1.927664221593003e+000 4.979007501790993e−001 −5.688985915498652e−001
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Figure 10. The variation of the identified root number in the search interval and the minimum

iteration number for ALRP values 0.1 � μ � 1.8 for the identity activation function, for the

Example System 7.

F3(x) = x3 − 0.16955071x1x2x10 − 0.27162577 = 0,

F4(x) = x4 − 0.15585316x1x6x7 − 0.19807914 = 0,

F5(x) = x5 − 0.19950920x3x6x7 − 0.44166728 = 0,

F6(x) = x6 − 0.18922793x5x8x10 − 0.14654113 = 0,

F7(x) = x7 − 0.21180486x2x5x8 − 0.42937161 = 0,

F8(x) = x8 − 0.17081208x1x6x7 − 0.07056438 = 0,

F9(x) = x9 − 0.19612740x6x8x10 − 0.34504906 = 0,

F10(x) = x10 − 0.21466544x1x4x8 − 0.42651102 = 0,

where x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)
T (this is the Example 3 from [29], see also

[14]), it is associated with an interval arithmetic application, and according to [29] it has

only one solution). To achieve a solution similar to the one reported in [29], a tolerance

value tol = 29 has to be used with an accuracy regarding the absolute error of 14–15

decimal digits. The neural solved was ran 1,024 times working in all three modes of operation

in the search interval −2 � xi � 2 (i = 1, 2, . . . , 10) with a variation step h = 4 and for

ALRP values 0.1 � μ � 1.9. The variation of the average and the minimum iteration

number with respect to the value of the ALRP for tolerance tol = 29 and for the NLMALR

method is shown in Figure 12. Regarding the global absolute error the cited method gave

an error of 0.00000000000000 while the error value associated with the proposed method is

1.526556658859590200e− 016 = 0.00000000000000.
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Figure 11. The total number of identified roots with respect to the identified roots that belong to

the search interval for the Example System 7.
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Figure 12. The variation of the average and the minimum iteration number with respect to the

value of the ALRP (tol = 29) for the NLMALR method and for the Example System 8.

6.1 Test results with iteration number and execution CPU time for large sparse

non-linear systems of equations

A very crucial task in evaluating this type of arithmetic methods, is to examine their scaling

capabilities and more specifically to measure the iteration number and the execution time

as the dimension of the system increases. In order to compare the results of the proposed

method with the ones emerged by other well-known methods, the following example

systems were implemented and solved using the proposed algorithm:
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• Example 9 This system is Problem 3 in [20] and it is defined as

fi(x) = x2
i + xi − 2 (i = 1, 2, . . . , n)

with initial conditions x0 = (0.5, 0.5, 0.5, . . . , 0.5).

• Example 10 This system is Problem 5 in [20] and it is defined as

fi(x) = x2
i − 4 (i = 1, 2, . . . , n)

with initial conditions x0 = (0.5, 0.5, 0.5, . . . , 0.5).

• Example 11 This system is Problem 4 in [33] and it is defined as

{
fi(x) = 1 − xi i = 1, 3, . . . , n− 1

fi(x) = 10(xi − xi−1)
2i = 2, 4, . . . , n

with initial conditions x0 = (−1.2,−1.2, . . . ,−1).

In this simulations, the proposed method identified as GBALR (Generalized Back-

propagation with Adaptive Learning Rate) is used with the identity function y = x

as the output neurons activation function and it is based to the minimization of the

quantity
∑

i f
2
i (x)/2 (i = 1, 2, . . . , n). Besides this base method, there are two additional

variations of this approach that are also tested, namely, the variation GBALR1 that

uses the function y = tanh x and minimizes the quantity
∑

i f
2
i (x)/2 (i = 1, 2, . . . , n) and

the variation GBALR2 that uses the function y = tanh x and minimizes the quantity∑
i tanh(f2

i (x))/2 (i = 1, 2, . . . , n). These methods are compared against the classical and

the fixed Newton’s methods as well the Broyden1 and Broyden2 methods described in the

theoretical section.

The simulation results for the above examples are summarized in Table 9. For each

example, the system dimension n was set to the values 10, 20, 50, 100, 200, 500 and 1, 000.

In this table, a cell with the ‘−’ symbol means that either the algorithm could not lead to

a result (i.e. it was divergent), or the maximum number of iterations (with a value equal

to 500) was reached. Regarding the simulation parameters, their values are ALRP = 0.8

and tol = 10 for Example 9, ALRP = 0.8 and tol = 12 for Example 10, ALRP = 1.0 and

tol = 12 for Example 11, ALRP = 1.0 and tol = 14 for Example 12 and ALRP = 0.8

and tol = 10 for Example 13. The main conclusions of the above experiments are the

following:

• It seems that the proposed method is better than Newton’s method, since the last method

does not converge in the Examples (9,12,13) (in the Examples 9 and 13, it converges

only for n = 2). Furthermore, in the Example 10, the proposed method converged after

the same number of iterations but with a better CPU time.

• Fixed Newton method converges only in the Examples 10 and 13 and requires more

iterations with respect to the proposed method even though the CPU time for n =

500, 1, 000 is better than GBALR.
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Table 9. Tables for Examples 9–11 with iteration number and CPU time (in seconds) for systems with n = 10, 20, 50, 100, 200, 500, 1, 000,

using Newton, Fixed Newton, Broyden-1, Broyden-2 and GBALR (three variations) methods

Newton Fixed Newton Broyden-1 Broyden-2 GBALR GBALR1 GBALR2

n ITER CPU ITER CPU ITER CPU ITER CPU ITER CPU ALRP ITER CPU ALRP ITER CPU ALRP

E

X

9

10 4 0.0036 21 0.0020 6 0.0012 6 0.0009 1 0.0004 0.8 3 0.0007 1.0 3 0.0004 1.0

20 4 0.0043 22 0.0033 6 0.0009 6 0.0006 1 0.0003 0.8 4 0.0007 1.0 3 0.0009 1.0

50 4 0.0049 22 0.0053 6 0.0021 6 0.0009 1 0.0006 0.8 4 0.0018 1.0 4 0.0020 1.0

100 4 0.0082 23 0.0143 6 0.0065 6 0.0023 1 0.0019 0.8 4 0.0066 1.0 4 0.0079 1.0

200 4 0.0886 23 0.0822 6 0.0326 6 0.0090 1 0.0089 0.8 4 0.0337 1.0 4 0.0341 1.0

500 4 0.8281 24 1.0735 6 0.3282 6 0.0383 1 0.1792 0.8 4 0.7020 1.0 4 0.7333 1.0

1, 000 4 7.5342 25 7.4984 6 2.5772 6 0.1681 1 1.6868 0.8 4 6.7449 1.0 4 6.8611 1.0

E

X

10

10 6 0.0027 − − 8 0.0010 8 0.0008 6 0.0008 1.0 5 0.0006 1.0 5 0.0007 1.0

20 6 0.0047 − − 8 0.0014 8 0.0009 6 0.0013 1.0 5 0.0009 1.0 5 0.0007 1.0

50 6 0.0090 − − 8 0.0027 8 0.0013 6 0.0027 1.0 5 0.0022 1.0 5 0.0024 1.0

100 6 0.0253 − − 8 0.0084 8 0.0174 6 0.0088 1.0 5 0.0072 1.0 5 0.0087 1.0

200 6 0.0624 − − 8 0.0397 8 0.0088 6 0.0512 1.0 5 0.0382 1.0 5 0.0417 1.0

500 6 1.3586 − − 8 0.3747 8 0.0492 6 1.0863 1.0 5 0.8978 1.0 5 0.9287 1.0

1, 000 6 11.4271 − − 8 2.8243 8 0.2233 6 10.2622 1.0 5 8.6765 1.0 5 9.0248 1.0

E

X

11

10 − − − − − − − − 21 0.0018 1.0 34 0.0034 1.4 − − −
20 − − − − − − − − 22 0.0022 1.0 48 0.0043 1.4 − − −
50 − − − − − − − − 22 0.0073 1.0 49 0.0158 1.4 − − −

100 − − − − − − − − 22 0.0287 1.0 49 0.0704 1.4 − − −
200 − − − − − − − − 22 0.1198 1.0 50 0.2656 1.4 − − −
500 − − − − − − − − 23 2.0861 1.0 50 4.5391 1.4 − − −

1, 000 − − − − − − − − 23 19.0208 1.0 51 44.7966 1.4 − − −
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• Broyden methods converge only in the Example 9 and requires more iterations than

GBALR even though it achieves better CPU times for n = 500, 1, 000.
• In Example 9, GBALR requires only one iteration and therefore it is better than all the

other methods regarding the iteration number; however, Broyden methods are superior

than GBALR for large values of n.
• None of the classical methods converges in Example 11.
• A comparison between GBALR, GBALR1 and GBALR2 shows that GBALR is the

superior method since it converges in all examples.

7 Conclusions

The objective of this research was the design and performance evaluation of a neural net-

work architecture, capable of solving polynomial systems of equations. We first compared

our approach with some simple systems of non-linear equations having only two or three

equations that were recently used in our previous work for analysing the performance of

a new proposed method. The results obtained using the proposed adaptive learning rate

procedure, are very promising giving exact solutions with very fast convergence. Therefore,

the proposed method can be used for solving complicated polynomial systems in applic-

ations such as numerical integration, chemical equilibrium, kinematics, neuropsychology

and combustion technology.

Regarding larger system dimensions, the GBARL method is capable to solve large

sparse systems. In most cases, it is superior than the classical methods with respect to

iteration number but for large systems with dimensions n � 500 is characterized by larger

CPU time.

Challenges for future research include the use of the network with other activation

functions in the output layer, such as the hyperbolic tangent function, as well as the

ability of the network to handle situations such that the case of multiple roots (real and

complex) for the case of overdetermined and underdetermined systems.
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